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Abstract—Yield optimization is one of the central challenges in
submicrometer integrated circuit manufacture. Classic yield op-
timization methods rely on importance sampling (IS) to provide
efficient and robust yield estimation for each individual design.
Despite its success, such an approach is still computationally
expensive due to the large number of calculations for many dif-
ferent designs. To resolve this challenge, we propose conditional
importance sampling (CIS) that can approximate the optimal
proposal distribution for any given design by leveraging the
power of the modern deep-learning-based sampling method, con-
ditional normalizing flow. More importantly, CIS generalizes well
to unseen design and thus can deliver effective yield optimization
with a small number of expensive simulations. To conduct
yield optimization efficiently with consideration of creditable
uncertainty, we propose a novel Important Sampling Bayesian
Optimization (ISBO) using a deep-warped gradient-boosting
regression (GBR). The proposed method is extensively evaluated
against five state-of-the-art baselines; the results show that the
proposed method delivers superior performance: a speedup of
1.10x-10.46x (4.45x on average) with even higher yield designs,
an improvement of 1.1x-10x (4.44x on average) in consideration
of the Optimality-Cost Ratio, and most importantly, excellent
robustness and consistency in all our extensive experiments on
analog and SRAM circuits.

Index Terms—Yield Estimation, Yield Optimization, Impor-
tance Sampling, Conditional Normalizing Flow

I. INTRODUCTION

With the advancements in integrated circuits technology,

microelectronic devices have scaled down to the nanometer

range, introducing significant process variance, e.g., dop-

ing fluctuation, intra-die mismatches, and threshold voltage

variation. Consequently, circuit performance often deviates

from nominal design and fails to meet design specifications,

particularly in analog and mixed-signal CMOS circuits [1],

[2].To address this issue, the design of robust nominal circuits

becomes crucial. More specifically, we aim to satisfy elec-

tronic specifications while accommodating fabrication process

variations, thereby framing the yield optimization problem.

Yield optimization is highly challenging due to the need

for a large number of simulations to estimate the yield

for just a given design. Moreover, the availability of yield

derivatives with respect to the design parameters is limited,

further complicating the optimization process. An accurate

and efficient yield estimation is crucial for successful yield

optimization, and it has received considerable attention in

the literature. The Monte Carlo (MC) method is the golden

standard for yield estimation, known for its reliability and

wide practical use. However, MC is highly computationally

expensive, demanding tens of thousands of circuit simulations
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to achieve reasonable accuracy. For instance, achieving a yield

of 99.9999% necessitates a minimum of 107 simulations,

which is impractical in real-world scenarios.

Importance sampling (IS) based methods aim to enhance

the efficiency of MC estimator by emphasizing sampling from

the failure region. With the foundation established by the

optimal mean shift vector (OMSV [3]), IS-based methods

have emerged as a significant branch for yield estimation,

due to their high efficiency, reliability, and robustness. In an

effort to further enhance OMSV, adaptive importance sampling

(AIS) is proposed in [4] which dynamically updates the shifted

distribution as more samples are collected. To handle high-

dimensional spaces, adaptive clustering sampling (ACS [5])

employs multi-cone clustering to sample from multiple regions

and sequentially update the proposal distribution. Additionally,

non-Gaussian adaptive importance sampling (NGAIS [6]) in-

troduces a mixture of von Mises-Fisher distributions to replace

Gaussian distribution, further improving AIS’s performance.

Another important branch of yield estimation meth-

ods is surrogate-based yield estimation which employs a

surrogate/meta-model to predict performance metrics based

on variational parameters and design parameters. To inherit

the powerful fitting capacity of polynomial chaos expansion

(PCE) but to scale to the high-dimensional problems in yield

optimization, [7] introduces a low-rank tensor approximation

to efficiently approximate complete PCE to deliver an accurate

prediction of the performance metrics.

Since our objective is yield optimization rather than precise

yield estimation, allocating excessive computational resources

for accurate estimation in designs with inherently low yields is

not sensible. Inspired by this idea, [8] proposes a heuristic two-

stage MC yield estimation and Bayesian optimization (BO)

method based on weighted expected improvement for yield

optimization (WEIBO). The framework is further enhanced

by [9], which replaces the weighted acquisition function with

a max-value entropy search that enables a more effective

exploration of the design space (MESBO). Additionally, [10]

combines a gradient-free optimizer with its yield estimated

using a kernel density estimator to achieve efficient yield

optimization (KDEBO). Despite their success, the separation

of yield estimation and optimization entails a loss of accuracy

and stability.

To resolve this issue, all sensitivity adversarial importance

sampling (ASAIS [11]) eliminates the need for surrogate-

based optimization by directly optimizing the OMSV using

sensitivity analysis. However, this approach makes a strong

assumption that the OMSV is enough to characterize the

failure pattern, which is not the case in practice. In contrast,

bayesian yield analysis and optimization with active learning
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(BYA [12]) proposes a Gaussian process (GP)-based method

that conducts yield estimation and optimization simultaneously

to deliver both efficiency and effectiveness. However, like any

GP-based estimation, this method has the risk of failure if the

surrogate fitting is inaccurate.

To conduct an efficient yield optimization, we aim to equip

the IS-based method with a design parameter-dependent pro-

posal distribution such that the advantages of using a surrogate

can be absorbed while the risk of poor fitting is mitigated. The

novelty of this work includes:

1) As far as the authors are aware, CIS is the first IS-based

yield estimation that leverages prior knowledge from

similar designs as in the surrogate-based yield estimation

methods to improve sampling efficiency significantly.

2) CIS is developed with an extensive study of the latest

machine learning sampling methods.

3) To conduct effective yield optimization with cred-

itable uncertainty, we propose a novel ISBO approach

equipped with deep-warped gradient-boosting regression

(GBR).

4) Based on our extensive experiments of different circuits,

CIS achieves remarkable optimization in almost all

cases consistently, with an average speedup of 4.45x

(up to 10.46x), optimal performance improvement of

313x (up to 4,156x), and normalized Optimality-Cost

Ratio (nOCR) improvement of 4.44x (up to 10x) com-

pared with the state-of-the-art (SOTA) yield optimization

methods.

II. BACKGROUND

A. Problem Definition

Let x = [x(1), x(2), · · · , x(dx)]T ∈ X represent a vector en-

compassing various design parameters, e.g., transistor widths

and lengths, resistance values, capacitance values, and bias

voltages and currents. The feasible design parameter space, de-

noted as X , is defined by the circuit designer. The variational

parameters, denoted as v = [v(1), v(2), · · · , v(dv)]T ∈ V ,

are considered to comprehensively capture the inherent ran-

dom variations in the manufacturing process. After normal-

ization, the variational parameters v are assumed to follow

an independent Gaussian distribution, specifically character-

ized by the probability density function (PDF) p(v(i)) =

exp
(
−v(i)2/2

)
/
√
2π. The qualified design refers to a circuit

with the corresponding parameters [x,v], and the circuit per-

formance metric y can be expressed as a function y = f(x,v).
The failure status of a circuit is denoted using the failure

indicator I(x,v), where I(x,v) is 1 representing a failure

design and 0 otherwise. Thus, the failure rate is

g(x) =

∫
V
I(x,v)p(v)dv, (1)

The optimization problem is defined as finding x∗ that min-

imizes the failure rate, i.e., x∗ = argminx∈X g(x). The

challenge here is twofold. First, the computation of the failure

rate g(x) requires a large number of simulations to evaluate

the integral Eq. (1), and second, the derivative ∇xg(x) is not

available.

B. Monte Carlo and Importance Sampling Yield Estimation

Yield estimation, essentially the computation of g(x), is typ-

ically performed using MC methods. This involves sampling

M instances of vi from the distribution p(v) and evaluating

the failure probability by calculating the ratio of failure

samples to the total number of samples. The estimated failure

rate ĝ(x) can be approximated as ĝ(x) ≈ 1
M

∑M
i=1 I(x,vi).

Obtaining an estimate with 1−ε accuracy and 1−δ confidence

requires approximately N ≈ log(1/δ)
ε2ĝ(x) samples. For instance,

achieving 90% accuracy (ε = 0.1) and 90% confidence

(δ = 0.1) would require around N ≈ 100/g(x) samples.

Consequently, MC is infeasible in practice for small values of

g(x), such as 10−8 (which is a common requirement in SRAM

circuits). Intuitively, this can be understood by considering

that, on average, 1/g(x) samples are needed to get one failure

sample.

Instead of sampling from the distribution p(v), IS-based

methods draw samples from a proposal distribution q(v|x).
The circuit failure rate g(x) can be estimated using IS as

follows:

g(x) =

∫
V

I(x,v)p(v)

q(v|x) q(v|x)dv ≈ 1

N

N∑
i=1

I(x,vi)p(vi)

q(vi|x) ,

(2)

where vi is the sample drawn from q(v|x). By choosing an

appropriate proposal distribution q(v|x), the variance of the

estimator can be significantly reduced, meaning that fewer

samples are needed to achieve the same level of accuracy.

C. Yield Optimization Using Bayesian Optimization

Yield optimization is a more challenging task as it requires

optimization of the unknown function of g(x), which can be

evaluated only at given design x, and the direct derivative

∇xg(x) is unavailable. To conduct yield optimization, most

previous work relies on surrogate-based optimization. BO is

commonly employed to optimize the unknown function g(x).
BO assumes a GP prior g(x)|θ ∼ GP (m(x), k(x,x′|θ)),
where m(x) denotes the mean function and k(x,x′|θθθ) rep-

resents the covariance function. The model parameters θ of

the GP are estimated using the maximum likelihood estimate

(MLE) of the likelihood function, which is a joint Gaussian

distribution based on several failure rate estimations of g(x).
g(x) is then approximated with mean ḡ(x) and variance

υ̂(x) for any given x. This gives BO a unique advantage

in optimizing g(x) by considering the uncertainty. A simple

optimization strategy is to propose the next candidate based

on design x that minimizes ḡ(x) − βυ̂(x) where β plays a

crucial role in balancing the trade-off between exploration and

exploitation. This approach is commonly referred to as the

upper confidence bound (UCB), known for its simplicity and

effectiveness. Alternative acquisition functions, e.g., predictive

entropy search, are also available for BO.

III. RESEARCH METHODOLOGY

A. Adaptive Important Sampling Yield Estimation

For the IS-based yield estimation, the key component is to

have a proper proposal distribution, which is only available to

be approximated when enough data is collected. Thus, almost

adaptive important sampling methods try to design proposal

distribution that asymptotically approximates the ideal one,

which can be derived from Equation Eq. (2) by minimizing

the approximate variance

q(v|x) = argmin
q

Eq

[
w2(v|x) (I(x,v)− g(x))

2
]
, (3)
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where w(v|x) = p(v)/q(v|x) represents the x dependent

importance weight. By applying the Lagrange multiplier rule

for the calculus of variations, we obtain the optimal proposal

distribution, q(v|x) = p(v)I(x,v)
g(x) , which is proportional to the

distribution of failure events. Because I(x,v) is unknown, we

need to give q(v|x) some assumed form and update it as more

data, i.e., simulations, are executed.

For example, OMSV [3], the ground-breaking work for IS-

based yield estimation, designs a simple proposal distribu-

tion q(v|x) = p(v|μ∗,1), where μ∗ is updated by μ∗ =
argmini ||vi||2 s.t. I(x,vi) = 1, where i = 1, · · · , Ne are

all existing failure samples for x. The proposal distribution

is updated using the existing failure samples closest to the

failure origin. To enhance OMSV, AIS [4] proposes a Gaus-

sian mixture form: q(v|x) = 1
Ns

∑Ns

i=1 pi(v|μi,Σi), where

μi = {vi}Ns
i=1 represents Ns failure samples. To put forth

a model with a larger capacity, ACS [5] introduces q(v|x)
with clusters: q(v|x) = 1∑M

i=1 λi

∑J
j=1(

∑
vi∈Cj

λi)hj(v),

where i and j represent the failure samples and clusters,

respectively. The failure samples {x,vi}Mi=1 are assigned to

clusters {Cj}Jj=1; Nj is the number of failure samples of

cluster Cj satisfying
∑J

j=1 Nj = M . And hj(v) represents

the cluster sampling distribution in each cluster, which is

a mixture of Gaussian distribution, and λi represents the

probability density for all failure samples. ACS generates

M samples from q(v|x) and re-cluster them to update the

q(v|x). A similar work is NGAIS [6], which uses a non-

Gaussian distribution: von Mises-Fisher (vMF) mixture distri-

bution as the proposal distribution. The proposal distribution

is q(v|x) =
∑L

l=1 αlvl (v | μl, κl) , where L is the number

of vMF distributions and αl is the corresponding normalized

weight function. vl(v|μl, κl) represents a single-modal vMF

distribution where μl is the unit mean direction vector and

the concentration parameter kl is a measure of the degree

of directional dispersion. NGAIS adopts the MLE based on

the Expectation-Maximization (EM) algorithm framework to

conduct parameter estimation. New samples are generated

from the current q(v|x) and validated using real simulations,

which then update q(v|x) with more knowledge.

B. Modern Deep Learning Sampling

Despite the success of these SOTA methods, all of them

are limited by the lack of flexibility (for different problems)

and the requirement of domain knowledge to design a proper

form. To harness the power of modern deep learning to

approximate the optimal proposal distribution q∗(v|x), we

conduct an extensive study, covering Generative Adversarial

Network (GAN), Denoising Diffusion Probabilistic Models

(DDPM), Variational Autoencoder (VAE) and normalizing

flow (NF) to find the best candidate. GAN approximates the

data distribution indirectly with a sampling procedure and

an adversarial training; DDPM uses the diffusion process to

transform simple data to complex distribution of particularly

images. VAE maximizes the evidence lower bound and uses

the idea of dimension reduction to approximate the target

data distribution. All these methods have demonstrated their

great potential for sampling from unknown and complex

distributions. However, they do not produce a direct estimation

of data probability density, which is essential when computing

the importance weight in IS-based yield. In contrast, NF can

explicitly model the PDF of the data through invertible trans-

formations, enabling efficient sampling along with explicit

calculation of probability, making it particularly suitable for

IS-based yield estimation [13].

The idea of NF is to model a distribution q(v) as a change

of variables from the base distribution p(z) (e.g., Gaussian

distribution) using a series of invertible transformations which

are parameterized fk: v = fK ◦ . . . ◦ f2 ◦ f1(z, η), where

η is the model parameters. The PDF of the distribution q(v)
can be calculated using the change of variables formula, which

involves taking the determinant of the Jacobian matrix of each

transformation: q(v) = p(z)
∏K

k=1 | det(∂fk(z;η)∂z )|.
C. Conditional Normalizing Flow Yield Estimation

In this work, our main focus is on the yield optimization,

which requires yield estimation for multiple x iteratively.

Thus, we modify NF with a Conditional parameter x such that

the connection between different designs can be considered.

We specify proposal distribution q(v|x) as a Conditional

Normalizing Flow (CNF) [14]. The difference from NF is that

CNF transforms samples from a simple base distribution p(z)
with design parameter x,

q(v|x) = p(z)

K∏
k=1

| det(∂fk(z; η,x)
∂z

)|. (4)

To train the CNF, we aim to maximize the log-likelihood,

which can be computed by summing the log-probability

densities from each transformation as follows: log q(v|x) =

log p (z) +
∑K

k=1 log
∣∣∣∂fk(z;η,x)∂z

∣∣∣ . Through the application

of invertible transformations utilizing Spline Coupling Flows

conditioned on x, CNF can effectively learn intricate con-

ditional optimal proposal distribution q(v|x) as more data

are collected, which are based on sampling from q(v|x) and

putting the samples through the simulations. The difference is

that the design x is now considered in a uniform model like

in the joint surrogate-based method [12].

D. Uncertainty Quantification for CNF Yield Estimation

Traditional BO relies on GP approximation of g(x) with

approximated yield estimation samples ĝ(xi). Despite that

GP can quantify the uncertainty of g(x), the uncertainty

quantification is for the lack of collocation points ĝ(xi),
whereas the essence uncertainty caused by the CNF is not

well considered.

To resolve this issue, we first evaluate the uncertainty

of ĝ(x) caused by the proposal distribution CNF using the

deep ensemble method. More specifically, the yield estima-

tion is based on R different CNFs, which are trained in

parallel based on random initializations to produce mean

estimation ḡ(xi) = 1
R

∑R
r=1 ĝr(xi) and variance υ̂(xi) =

( 1
R

∑R
r=1(ĝr(xi)− ḡ(xi))

2)1/2, where ĝr(xi) is yield estima-

tion based on rth CNFs for xi.

E. Important Sampling Bayesian Optimization

With the uncertainty of ĝ(xi), we can now perform yield

optimization based on BO. More specifically, Since any BO

eventually optimizes a deterministic acquisition function, we

propose to directly optimize the acquisition function e.g.,

UCB(x) = ḡ(x)−βυ̂(x), using a deterministic yet powerful

model such as GBR. This way, the uncertainty is considered,

and some errors are supposed to be canceled out. We call this

important sampling Bayesian optimization (ISBO). GBR is

4B-3
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a highly effective and extensively utilized machine learning

technique for complex regression tasks, e.g., finance and

healthcare, where domain knowledge cannot be easily utilized.

It works by iteratively constructing multiple weak learners

and combining them with weights to approximate the UCB

function using colocation samples UCB(xi)

UCB(x) ≈
∑
i

γi · fDT (x, εi), (5)

where fDT (x, εi) is a decision tree regression with parameters

εi; γi is the weight. For efficient optimization of the approxi-

mated UCB(x), we adopt a gradient-free global optimization

approach. To further improve practicality and avoid local

optimum, we propose Dynamic Optimization with Restricted

Neighborhoods (DORN). DORN first divides the design pa-

rameter space X into several equal subspaces and executes a

random search optimization algorithm within each subspace to

select the optimal subspace and abandon the other subspaces.

This process is repeated until the maximum number of iter-

ations is reached. Compared to gradient-based optimization

algorithms, DORN avoids falling into local optima and is

characterized by its simplicity and efficiency. The main steps

of CIS yield optimization are summarized in Algorithm 1.

When conducting the yield optimization, the geometry

of UCB(x) can impact the optimization significantly. A

smoother geometry is the key to reducing this influence. Thus,

we leverage input-warping functions to stretch the geometry

locally to deliver a smoother response surface that is easier

to optimize. The idea is to use the Beta CDF input warping

function [15]

w(x(i)) = 1− (1− (x(i))a)b (6)

to parameterize x(i). Here, a > 0 and b > 0 represent the

concentration parameters learned during the training process.

Unlike the original work, we discover that multiple layers of

wrapping can further improve the final performance possibly

due to its capacity to smooth more local regions. Some exper-

imental findings are shown in the later experiment section.

Algorithm 1 CIS Yield Optimization

Require: SPICE-based Indication I(v,x), R, Niter

1: Pre-sampling: get failure samples D = {{vs,xk}Nv
s=1}Nx

k=1

by Onion Sampling [13]

2: Initialization: obtain initial training samples Dg for GBR

using deep ensemble with CNF IS-based yield estimation

3: for i = 1 to Niter do
4: Fit GBR with Dg and optimize UCB using DORN to

get optimal design x∗i
5: for r=1 to R do
6: Update CNF qr(v|x∗i ) with dataset D and estimate

ĝr(x
∗
i )

7: Generate Q samples v′s from qr(v|x∗i ).
8: Pass v′s to SPICE-based indication I(v′s,x

∗
i ) to get

failure samples D′ = {v′s,x∗i }N
′
v

s=1 and update dataset

D = D ∪D′
9: end for

10: Compute ḡ(x∗i ) and υ̂(x∗i ) to Get UCB(x∗i )
11: Get D′g = {x∗i , UCB(x∗i )} and update Dg = Dg ∪ D′g
12: end for
13: return x∗i

IV. EXPERIMENTAL RESULTS

In this work, we comprehensively evaluate the accuracy

and efficiency of our proposed method, named CIS, on three

circuits: an operational transconductance amplifier (OTA), a

6T-SRAM, and an adder circuit. To establish a solid basis

for comparison, we implement five SOTA yield optimization

methods: WEIBO [2], MESBO [9], ASAIS [11], KDEBO

[10], and BYA [12]. To ensure the robustness of the methods,

we introduce two distinct circuit specifications, referred to as

Case 1 and Case 2, for each circuit in the yield optimiza-

tion experiments. We validate the optimal designs using MC

simulations, with 4e7 and 1e6 simulations conducted in Case

1 and Case 2, respectively. In order to better demonstrate

the optimization efficiency of each method, we introduce a

novel evaluation criterion called nOCR. OCR is defined as

the ratio of final yield divided by the number of simulations.

Normalization means dividing all OCR by a baseline OCR,

which is the OCR of CIS in this work. To ensure fairness,

each algorithm is executed 5 times with different seeds, and

the final optimization experimental results are based on the

average of the results of these 5 seeds as shown in Table I.

In the experiments, CNF adopts an 8-layer flow of transfor-

mations, with each layer containing a 2-layer multi-layer per-

ceptron (MLP), which has 10 times the dimension of v hidden

units and uses the ReLU activation function. The optimization

processes use the Adam optimizer, with 500 iterations for CNF

model update and UCB optimization. When fitting GBR, we

use 3 iterations, each proposing 10 samples to update CNF

and get υ̂(x) and ḡ(x). In addition, 3-layer input warping

function is applied. The baseline methods are implemented

using their default settings, and in some cases where certain

methods lack generalization, we fine-tune hyperparameters to

achieve better performance for different circuits. Note that CIS

does not require any adjustments for any experiments. All

experiments are conducted on a Linux system with an AMD

7950x CPU and 32GB RAM.
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Fig. 1: Operational Transconductance Amplifier Circuit

A. Operational Transconductance Amplifier Circuit

The operational transconductance amplifier (OTA) circuit

(shown in Fig. 1) is fabricated using a 180 nm CMOS process

with 14 transistors. Three design parameters are contained:

the transistor widths of M5, M7, and M13. Additionally, each

transistor has four process variation parameters, namely oxide

thickness, threshold voltage, and length and width variations

due to process deviation. In our experiments, we evaluate the

performance of interest, namely, the quiescent current IQ at a

temperature of 27◦C.

As shown in Table I, in Case 1, CIS achieves a significant

optimization performance improvement of 0.01%-3.3% with

a speedup of 2.94x-5.86x compared to all baseline methods,

which shows the stability and robustness of CIS. In case 2,

MESBO outperforms CIS in terms of standard deviation (std)

results, but it incurs 3.73x higher simulations than CIS. In

contrast, with a speedup of 2.71x-6.11x, CIS demonstrates

4B-3
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TABLE I: Yield optimization report for the OTA, 6T-SRAM and adder circuit

Circuits OTA 6T-SRAM Adder

Case Method Yield Std #Sim nOCR Fail Rate Std #Sim nOCR Fail Rate Std #Sim nOCR

1

WEIBO 99.56% 0.39% 5377 0.25x 2.42e-6 1.78e-6 2559 0.42x 1.30e-6 4.20e-7 4033 0.39x

MESBO 99.63% 0.45% 4691 0.29x 8.50e-8 6.25e-8 4586 0.23x 7.00e-8 4.00e-8 8018 0.19x

ASAIS 96.67% 4.04% 2651 0.50x 6.50e-8 9.00e-8 1192 0.89x 5.00e-8 2.24e-8 2422 0.64x

KDEBO 99.96% 0.09% 8000 0.17x 1.87e-4 2.26e-4 7000 0.15x 6.00e-8 2.00e-8 10000 0.16x

BYA 99.94% 0.06% 6600 0.21x 7.00e-8 4.36e-8 11000 0.10x 4.50e-8 1.00e-8 11000 0.14x

Proposed 99.97% 0.02% 1365 1.00x 4.50e-8 1.00e-8 1065 1.00x 4.00e-8 1.22e-8 1555 1.00x

2

WEIBO 99.78% 0.13% 4223 0.31x 1.42e-4 1.25e-4 1897 0.40x 1.78e-5 7.48e-7 3515 0.39x

MESBO 99.84% 4.00e-3% 4880 0.27x 2.62e-5 3.95e-5 2252 0.34x 1.72e-5 2.48e-6 6150 0.22x

ASAIS 99.43% 0.22% 3546 0.37x 7.80e-6 8.93e-6 804 0.95x 1.72e-5 5.71e-6 2413 0.57x

KDEBO 99.69% 0.12% 8000 0.16x 1.10e-2 2.39e-3 5720 0.13x 3.94e-5 4.65e-5 8000 0.17x

BYA 99.83% 7.48e-3% 6600 0.20x 1.08e-5 4.12e-6 8000 0.10x 1.72e-5 2.45e-7 8000 0.17x

Proposed 99.87% 0.01% 1310 1.00x 5.60e-6 2.80e-6 765 1.00x 1.36e-5 5.28e-6 1383 1.00x

a notable performance improvement of 0.04%-0.90%. More

importantly, in both Case 1 and Case 2, CIS performs best in

the nOCR metric, which achieves an average improvement of

4.10x (up to 6.25x) compared to all baseline methods.
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Fig. 2: Simplified schematic for 6T-SRAM and Adder Circuits
B. 6T-SRAM Circuit

The SRAM bit-cell (see the left figure of Fig. 2 for a

simplified schematic representation) is fabricated using a 45nm

CMOS process and consists of six transistors. Each transistor

has three independent random variables: threshold voltage,

mobility, and gate oxide width, composing 18 independent

variational parameters for each SRAM cell. For optimization,

we focus on the width and length of an individual tran sistor

as the design parameters. In our experiments, the performance

metric of interest is the optimization of the write delay.

In Table I, CIS demonstrates the best performance with the

fewest simulations in both Case 1 and Case 2. Compared

to the baseline methods, CIS stands out with a remarkable

performance improvement of 1.56x-4,156x with a speedup

of 1.12x-10.32x in Case 1 and a performance improvement

of 1.39x-1,964x with a speedup of 1.05x-10.46x in Case 2.

Furthermore, CIS outperforms all baseline methods with a

perfect nOCR metric in both case1 and case2 experiments,

exhibiting an average improvement of 4.87 x (up to 10x).

C. Adder Circuit
The adder circuit (shown in the right figure of Fig. 2)

consists of 28 MOS transistors, each with three consistent

variational parameters, totaling 84 variational parameters. Our

main design focus involves two design parameters: the width

and length of each transistor. We meticulously evaluate the

time-to-threshold (TT) performance within a defined tempera-

ture range of 27◦C while determining the yield by simulating

the transient response until the sum of outputs matches a

predefined threshold voltage.

In this evaluation, BYA shows favorable std performance,

but it incurs simulations up to 7x higher than CIS. Remark-

ably, CIS achieves the best performance with the minimum

number of simulations. In Case 1, CIS achieves an impressive

performance improvement of 1.13x-32.50x, with a speedup of

1.56x-7.07x. In Case 2, CIS achieves a substantial performance

improvement of 1.26x-2.90x, along with a speedup of 1.74x-

5.78x. Additionally, CIS achieves an excellent nOCR metric

in both Case 1 and Case 2 compared to all baseline methods,

showcasing an average improvement of 4.34x (up to 7.14x).

D. Resource-based Comparison
To showcase the optimization efficiency of each method in

our experiments, we initially conduct ten optimization runs

with a unified stopping criterion. However, since each method

has distinct stopping criteria, we aim to provide a more

comprehensive demonstration of optimization performance. To

achieve this, we adopt a classic experimental approach: each

method is no longer restricted to a fixed number of runs but

instead given the same simulation resources for yield opti-

mization. We conduct Case 1 experiments on the previously

mentioned three circuits and record the optimization outcomes

for each method at 5,000 and 10,000 simulations. Additionally,

we perform 5 runs for each method with different random

seeds. The experimental results are summarized in Table II.

For the OTA circuit, when using 5,000 simulations, CIS

achieves the best optimization performance, outperforming

other baseline methods by 0.03%-3.32% in terms of mean

results. With 10,000 simulations, CIS continues to perform

remarkably well, except for ASAIS, which has a smaller std

result. The optimization improvement of CIS ranges from

0.01% to 0.4%. For the classic 6T-SRAM circuit, CIS stands

out as the best performer in all cases, achieving a remark-

able performance improvement of 1.07x-269,143x with 5,000

simulations and 1.01x-6,233x with 10,000 simulations. Lastly,

for the adder circuit, CIS remains the top-performing method

among all methods. It demonstrates a remarkable optimization

improvement of 1.11x-63,000x with 5,000 simulations, and a

1.40x-50x enhancement with 10,000 simulations.

E. ISBO vs BO(GP)
Furthermore, we conduct a comparative experiment in Case

1 for OTA circuits using ISBO and BO with GP, respectively,

and the results are shown in Table III. Due to the relatively

high dimensionality of OTA circuits and the sparsity of sam-

ples in high-dimensional space, the kernel function estimation

of GP becomes unstable, resulting in significantly inferior
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TABLE II: Yield optimization for the three circuits with different numbers of total simulations

Circuits OTA (Yield) 6T-SRAM (Fail Rate) Adder (Fail Rate)

#Sim Method Best Worst Mean Std Best Worst Mean Std Best Worst Mean Std

5K

WEIBO 99.94% 99.09% 99.56% 0.40% 3.50e-7 5.75e-6 2.42e-6 1.78e-6 7.50e-7 2.02e-6 1.30e-6 4.20e-7

MESBO 99.99% 99.07% 99.63% 0.45% 2.50e-8 2.00e-7 8.50e-8 6.25e-8 5.00e-8 1.24e-3 2.48e-4 4.89e-4

ASAIS 99.97% 91.65% 96.65% 4.06% 2.50e-8 5.00e-8 3.75e-8 1.25e-8 2.50e-8 5.00e-8 4.44e-8 1.04e-8

KDEBO 99.99% 99.50% 99.80% 0.22% 2.50e-8 9.24e-2 9.42e-3 2.72e-2 5.00e-8 1.87e-2 2.52e-3 5.64e-3

BYA 99.98% 99.87% 99.93% 0.06% 2.50e-8 1.50e-7 1.40e-7 5.83e-8 2.50e-8 5.00e-8 4.50e-8 1.00e-8

Proposed 99.99% 99.94% 99.97% 0.02% 2.50e-8 5.00e-8 3.50e-8 1.22e-8 2.50e-8 5.00e-8 4.00e-8 1.22e-8

10K

WEIBO 99.94% 99.09% 99.58% 0.39% 2.50e-8 5.75e-6 1.22e-6 1.71e-6 5.00e-8 2.00e-6 1.58e-6 7.61e-7

MESBO 99.99% 99.93% 99.97% 0.02% 2.50e-8 5.00e-8 3.03e-8 1.02e-8 5.00e-8 1.50e-7 7.00e-8 4.00e-8

ASAIS 99.98% 99.96% 99.97% 7.05e-3% 2.50e-8 5.00e-8 3.33e-8 1.18e-8 2.50e-8 5.00e-8 4.44e-8 1.04e-8

KDEBO 99.99% 99.92% 99.96% 0.09% 2.50e-8 5.19e-4 1.87e-4 2.26e-4 5.00e-8 1.00e-7 6.00e-8 2.00e-8

BYA 99.99% 99.87% 99.94% 0.06% 2.50e-8 1.50e-7 7.00e-8 4.36e-8 2.50e-8 5.00e-8 4.50e-8 1.00e-8

Proposed 99.99% 99.97% 99.98% 7.48e-3% 2.50e-8 5.00e-8 3.00e-8 1.00e-8 2.50e-8 5.00e-8 3.17e-8 9.72e-9

TABLE III: Yield Optimization for OTA

Model Best Worst Mean Std

ISBO 99.99% 99.94% 99.97% 0.02%
BO(GP) 98.31% 98.19% 98.25% 0.04%

TABLE IV: Yield Optimization Statistical Results

OTA 6T-SRAM Adder

Layer Single Multiple Single Multiple Single Multiple

Best 98.95% 99.99% 5.00e-8 2.50e-8 5.00e-8 2.50e-8
Worst 98.81% 99.94% 2.00e-6 5.00e-8 5.27e-4 5.00e-8
Mean 98.89% 99.97% 1.02e-6 4.50e-8 1.06e-4 4.00e-8
Std 0.05% 0.02% 8.72e-7 1.00e-8 2.10e-4 1.22e-8

optimization performance compared to GBR, which is more

suitable for fitting in high-dimensional space. Specifically,

the optimization performance of ISBO for yield optimization

demonstrates an average improvement of 1.72% compared

with BO.

������

������

������

	
��
������� ����
������� ��
�
�������

Fig. 3: CIS with different Warping layers on OTA circuit

F. Ablation Study
Finally, we also test the impact of stacking warping func-

tion layers, both single and multiple, on the optimization

performance of CIS. The yield optimization experiments are

conducted on three circuits in Case 1 and the results are

summarized in Table IV (yield for OTA and fail rate for

others). We can see that stacking multiple layers of warping

functions consistently outperforms using a single layer. This

improvement is 1.08% for the OTA circuit and 441x-2,650x

for 6T-SRAM and adder circuits, based on the mean results. As

shown in Fig. 3, the more layers, the better the optimization.

V. CONCLUSION

We propose CIS, a novel yield optimization framework

equipped with CNF and a novel ISBO approach. The ex-

ceptional performance of CIS is firmly validated through a

comprehensive series of experiments on real-world circuit

benchmarks, accompanied by meticulous ablation studies. The

limitation includes the discrete optimization for GBR in ISBO

and its scalability to dimension, which should be addressed

with other advanced optimization schemes with gradients.
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