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ABSTRACT
Yield estimation and optimization have become increasingly impor-
tant for circuit design as technology nodes scale down. Simple yet
well-established minimal norm importance sampling (MNIS) still
serves as an industrial standard due to its robustness and reliability.
In this study, we generalize the classic MNIS and propose Every
Failure Is A Lesson (EFIAL) to utilize every failure sample (instead
of one in MNIS) to construct the proposal distribution. EFIAL is
completely tuning-free and the update computation complexity is
only O(𝑀) (𝑀 is the number of failure samples) by utilizing the
blessing of dimensionality. The idea of EFIAL is then extended to
the state-of-the-art (SOTA) pre-sampling method, onion sampling,
to significantly boost efficiency, by up to 9.08x (4.68x on average).
Extensive evaluations against SOTA yield estimation methods reveal
that EFIAL achieves a speedup of up to 13.54x (5.16x on average)
and an accuracy improvement of up to 24.91%.
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1 INTRODUCTION
As integrated circuit technology advances, microelectronic devices
are shrinking to submicrometer scales. Consequently, factors like
intra-diemismatches, doping fluctuations, and threshold voltage vari-
ations, which result from random process variations, have become
increasingly critical considerations in circuit design. This challenge
becomes even more pronounced in contemporary circuit designs,
particularly those where certain components are replicated millions
of times within a single circuit, such as in the case of SRAM cell ar-
rays. To address the rising concerns about yield, the development of
efficient yield estimation methods has become pivotal. These meth-
ods aim to provide rapid and precise assessments of failure probabil-
ities for specific circuit designs under particular process variations.
The cornerstone solution in this context remains the Monte Carlo
(MC) simulation, widely adopted in both industry and academia. In
essence, MC involves running SPICE simulations (Simulation Pro-
gram with Integrated Circuit Emphasis) for instance configurations
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drawn from the distribution of process variations. The yield is then
estimated by counting the number of failures. It is thus evident that
MC is computationally expensive and can easily become infeasible
for low-yield problems, which are increasingly common in modern
circuit designs.

In recent years, artificial intelligence (AI) has made significant
strides, opening the door to new possibilities and solutions to resolve
almost all challenges in the EDA pipeline. For yield estimation, most
AI approaches rely on a data-driven surrogate model to approximate
the unknown performance function. For instance, LRTA [1], a low-
rank approximated polynomial chaos expansion (PCE), is proposed
to approximate the performance function. Similarly, ASDK [2] and
AYEBO [3] employ a Gaussian process (GP) with different strate-
gies to deliver sequential updates of yield estimation. Recently, deep
learning has also been introduced to yield estimation, e.g., [4] uses
normalizing flow to fit the distribution of failure areas for yield
estimation. Despite their success, this type of method requires care-
ful model training and hyperparameter tuning, making them less
attractive to the industry and pragmatists.

To deliver stable and efficient yield estimation, importance sam-
pling (IS)-based methods are normally employed in industry. They
draw samples from a proposal distribution. The main advantages
of IS-based methods are that they will not introduce bias and will
always converge, i.e.,, even when the designed proposal distribution
is far from the ideal one, the estimation will still converge to the
truth value provided enough samples. The key to improving IS-based
methods is to design a proposal distribution that approximates the
failure distribution. To this end, the foundational work, minimization
of norm IS (MNIS), chooses a normal distribution with the mean
being the closest failure sample to the origin as the proposal dis-
tribution [5]. To approximate the ideal optimal mean shift vector
(OMSV) instead of choosing the closest failure sample, Gradient
Importance Sampling (GIS [6]) uses gradient descent to search for
the OMSV. Based on this idea, Fast Sensitivity Importance Sampling
(FSIS [7]) uses sensitivity analysis to replace the gradient descent in
GIS to further improve effectiveness. To further improve efficiency,
adaptive importance sampling (AIS [8]) proposes to update OMSV
as more data is collected. To deal with the common multi-region
failure challenge, HSCS [9] proposes a cluster-based model at the
pre-sampling stage. This idea is further improved by ACS [10], which
introduces a multi-cone clustering for failure regions and iteratively
updates its proposal distribution.

Due to their robustness and simplicity, OMSV-based methods
are widely adopted in industry. However, almost all OMSV-based
methods [6, 8–10] are based on a single failure sample that is closest
to the origin among all failure samples, which overlooks the rich in-
formation carried by other failure samples and leads to sub-optimal
performance. To resolve this issue, we propose Every Failure Is A
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Lesson (EFIAL), which utilizes all failure samples to construct the
proposal distribution. EFIAL inherits the advantages of MNIS as
a tuning-free method and lightning-fast computation. Inspired by
EFIAL, the state-of-the-art (SOTA) pre-sampling method, onion sam-
pling, is also improved with the weighting trick to boost efficiency.
The novelty of this work includes:

(1) EFIAL: A generalization of MNIS utilizing every failure sam-
ple (instead of using one); it is completely tuning-free; the
computation complexity is O(𝑀) (𝑀 is the number of failure
samples).

(2) EFIAL-onion sampling: a novel pre-sampling method by im-
plementing EFIAL to the SOTA pre-sampling method, onion
sampling.

(3) Comprehensive experiments in three circuits showcase a
2.21%-24.98% enhancement in accuracy and a 2.65x-12.99x
speedup in efficiency over six SOTA baseline methods.

(4) EFIAL-onion sampling consistently improves all IS-based
methods by 8.04%-23.28% in accuracy and 2.12x-9.08x in effi-
ciency.

2 BACKGROUND
2.1 Problem Definition
Let x = [𝑥 (1) , 𝑥 (2) , · · · , 𝑥 (𝐷 ) ]𝑇 ∈ X denote variation process pa-
rameters. Each element within x represents the variation param-
eters associated with a circuit during the manufacturing process.
These parameters could include quantities such as the length or
width of transistors. Generally, the components of x are regarded
as being mutually independent and Gaussian distributed, 𝑝 (x) =
(2𝜋)

𝐷
2 exp

(
− 1
2 | |x| |

2
)
. Upon having a specific configuration of x,

one can evaluate the performance of the circuit 𝑦 (𝑘 ) (e.g., mem-
ory read/write time and amplifier gain), using a SPICE simulation,
y = f (x). If all performance metrics satisfy certain pre-defined
thresholds 𝑡 (𝑘 ) , i.e., 𝑦 (𝑘 ) ≤ 𝑡 (𝑘 ) for 𝑘 = 1, · · · , 𝐾 , the circuit is
considered a success; otherwise, it is a failure.

To succinctly represent the failure status of a circuit, an indicator
function 𝐼 (x) is normally introduced. Specifically, 𝐼 (x) equals 1 if
the corresponding x leads to a design failure, and 0 otherwise. The
ground-truth failure rate 𝑃𝑓 is determined as the integral of 𝐼 (x) over
the variation process parameter spaceX, weighted by the probability
density function 𝑝 (x): 𝑃𝑓 =

∫
X 𝐼 (x) 𝑝 (x)𝑑x. Due to the unknown

nature of 𝐼 (x), the direct calculation of the yield is intractable.
2.2 Monte Carlo Yield Estimation
A prevalent strategy to approximate the failure rate is the Monte
Carlo (MC) method, which draws samples x𝑖 from 𝑝 (x), and sub-
sequently approximates the failure rate by establishing the ratio
of failure samples to the total number of samples. In precise terms,
the estimated failure rate 𝑃𝑓 is approximated as 𝑃𝑓 = 1

𝑁

∑𝑁
𝑖=1 𝐼 (x𝑖 ),

where x𝑖 indicates the 𝑖-th sample obtained from 𝑝 (x), and 𝑁 rep-
resents the number of samples. As 𝑁 tends towards infinity, 𝑃𝑓
asymptotically approaches 𝑃𝑓 . To attain an estimation with an ac-
curacy of 1 − 𝜀 and a confidence level of 1 − 𝛿 , the required sample
number 𝑁 can be approximated as 𝑁 ≈ log(1/𝛿 )

𝜀2𝑃𝑓
. In practice, when

aiming for a moderate accuracy of 90% (𝜀 = 0.1) with a confidence
level of 90% (𝛿 = 0.1), the required sample number is 𝑁 ≈ 100/𝑃𝑓 .
Clearly, this approach becomes impractical when dealing with sce-
narios characterized by small values of 𝑃𝑓 , such as 𝑃𝑓 = 10−5. This

impracticality can be intuitively understood by recognizing that, on
average, at least 1/𝑃𝑓 samples are needed before we can observe a
failure event.

2.3 Importance Sampling Yield Estimation
Instead of drawing samples directly from 𝑝 (x), the IS-based methods
adopt an alternate strategy by drawing samples from a distinct
proposal distribution denoted as 𝑞(x) to estimate the failure rate 𝑃𝑓 ,
which can be formulated as follows:

𝑃𝑓 =

∫
X

𝐼 (x)𝑝 (x)
𝑞(x) 𝑞(x)𝑑x ≈ 1

𝑁

𝑁∑︁
𝑖=1

𝐼 (x𝑖 )𝑝 (x𝑖 )
𝑞(x𝑖 )

, (1)

where x𝑖 denotes samples drawn from 𝑞(x), which are subsequently
employed to approximate the integral in a manner akin to MC. For
ease of notation, the importance weight is defined as𝑤 (x) = 𝑝 (x)

𝑞 (x) .
When the proposal distribution 𝑞(x) is designed properly, Eq. (1) is
more efficient than MC. Utilizing Lagrange multiplier rule for calcu-
lus of variations, we can show that the optimal proposal distribution
is given by

𝑞∗ (x) = 𝑝 (x)𝐼 (x)/𝑃𝑓 . (2)

3 PROPOSED APPROACH
3.1 Minimization Norm IS Yield Estimation
A canonical method that sets the stage for IS-based yield estimation
is MNIS [5], which samples from a normal distribution centered at
𝝁∗, which is called the optimal mean shift vector (OMSV) and is
determined by solving the following optimization problem:

𝝁∗ = argmin | |x| |2 s.t. 𝐼 (x) = 1, (3)

where | |x| |2 = x𝑇 x represents the Euclidean norm. Certainly Eq. (3)
is intractable due to the unknown 𝐼 (x). MNIS derives an approxi-
mation by drawing samples from a uniform distribution over the
parameter space X and subsequently forms an initial collection of
failure samples D. The OMSV is then obtained by identifying the
sample closest to the origin, i.e.,

𝝁∗ ≈ x = argmin
𝑖∈D

| |xi | |2 . (4)

An illustrative example is also given in Fig. 1a where the initial
failure samples are indicated by pink dots.

3.2 Searching OMSVWith Gradient
Despite its intuitive appeal and success, MNIS is suboptimal. This is
obvious from Fig. 1a and Eq. (4) where the OMSV is selected from a
finite set of failure samples based on randomly generated samples.
To solve Eq. (3) more accurately, we should utilize the gradient
information, as suggested by Gradient Importance Sampling (GIS
[6]). GIS uses gradients computed from finite differencemethods, and
searches for the OMSV with a sequential update scheme (illustrated
from S1 to S5 in Fig. 1b). To prevent a large step size that leads to
search outside the failure region, GIS uses a dichotomy strategy to
halve the step size when crossing the failure boundary (illustrated
from S2 to S3 and S4 to S5 in Fig. 1b). The search for the OMSV is
terminated when the step size reaches a predefined threshold.

While being effective, GIS loses an important advantage of MNIS,
i.e., the simplicity of the algorithm without hyperparameter tuning,
which is highly desirable in industry standard design flow. For GIS,
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Figure 1: Illustration of classic OMSV-based IS yield estimation (MNIS, GIS, and HSCS) and the proposed method (EFIAL).

Table 1: Classic OMSV-based Method Comparison

Method (chronologic) MNIS HSCS GIS ACS FSIS EFIAL
# hyperparameters 0 3 2 2 3 0

# Parameters 0 0 1 0 1 0
Multi-regions? No Yes No Yes No Yes
Adaptive? No No No Yes No Yes

we need to fine-tune the hyperparameter to achieve good perfor-
mance. Inspired by GIS, FSIS [7] proposes a more precise gradient
calculation based on sensitivity analysis and incorporates an ad-
justable learning rate to prevent searching outside the failure area,
at the cost of introducing another hyperparameter.

3.3 Handling Multiple Failure Regions
As clearly demonstrated in Fig. 1, traditional methods such as MNIS,
GIS, and FSIS cannot handle multiple failure regions because they
define only one OMSV, which seems to be an easy fix just by intro-
ducing multiple OMSVs. Hyperspherical Clustering and Sampling
(HSCS [9]) first introduces a hyperspherical k-means clustering to
identify multiple failure regions, based on which multiple OMSVs
are determined using MNIS. An illustrative example is given in
Fig. 1c where the two failure regions are indicated by pink and blue
dots, respectively. Identifying multiple failure regions becomes the
vital task for HSCS, which is then resolved by employing a spher-
ical pre-sampling technique to enhance computational efficiency.
Nonetheless, the success comes with a extra cost of hyperparameter
tuning.

All the aforementioned OMSV-based methods determine the
OMSV(s) based on pre-sampling failure samples, which seems to
be a waste of resource as more failure samples are observed and
collected during the yield estimation process. To resolve and push
the frontier of OMSV-based IS yield estimation, Adaptive Clustering
and Sampling (ACS [10]) improves HSCS by introducing an adap-
tive update framework to update the OMSVs during the estimation
process.

3.4 Remark on OMSV-based Methods
The evolution of OMSV-based methods is summarized in Table 1,
where we can see that the methods have evolved to address increas-
ingly complex problems at the cost of additional complexity and the
need for meticulous tuning. This shift shows a departure from their
original intent, which is to provide methods that are both reliable and

efficient—qualities highly prized in industrial applications. Given the
complexities associated with tuning hyperparameters in HSCS and
ACS, users might consider transitioning to more advanced machine
learning-based approaches, such as LowRank Tensor Approximation
(LRTA [1]) or Normalizing Flow [4].
3.5 Every Failure Is A Lesson
We seek to make a renaissance of MNIS, i.e., proposing a novel
tuning-free method that can handle increasingly complex modern
yield challenges with minimal computational cost and robustness.
We notice that once the OMSV is determined in MNIS, the other
failure samples are discarded, despite the fact that they also contain
useful information e.g., where the failure region may reside and the
volume of the failure region. As we will see soon, we should learn
from every failure sample to construct a better proposal distribution.

Revisiting the optimal proposal distribution in Eq. (2), the optimal
proposal distribution is proportional to 𝑝 (x)𝐼 (x), which is approx-
imated by using a simple normal distribution N(𝝁𝑖 , I), where 𝝁𝑖
is the failure sample with minimal norm. Inspired by this, let us
utilize more than one failure sample to construct a mixture Gaussian
distribution, serving as the proposal distribution 𝑞(x), i.e.,

𝑞(x) =
𝑀∑︁
𝑖=1

𝛽𝑖N(x|𝝁𝑖 , I), (5)

where 𝛽𝑖 is the weight, 𝝁𝑖 = x𝑖 is the failure sample, and 𝑀 is the
number of failure samples in our current collection. This idea is
illustrated in Fig. 1d where the failure samples are indicated by pink
dots. To optimize the mixture weight 𝛽𝑖 , we can substitute Eq. (5)
into Eq. (2), yielding,

𝑀∑︁
𝑖=1

𝛽𝑖N(x|𝝁𝑖 , I) =
1
𝑃𝑓
𝑝 (x)𝐼 (x). (6)

Because all successful samples substituted into Eq. (6) will make
the right hand side zero, they are not useful for determining 𝛽𝑖 .
Substituting all available failure samples into Eq. (6), we will have a
linear system of𝑀 equations with𝑀 unknowns, i.e., 𝛽𝑖 .

©­­­­­­­«

1 𝑒−
| |x1−x2 | |2
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where 𝜷 = (𝛽1, 𝛽2, . . . , 𝛽𝑀 )𝑇 are the target weights. Note that 𝑃𝑓
does not matter as we will normalize 𝜷 to make

∑𝑀
𝑖=1 𝛽𝑖 = 1, which

will not affect our proposal Eq. (5). We can use any linear equation
solver to obtain the optimal weights 𝜷 from Eq. (7), which requires
a computational cost of O(𝑀3)

3.6 Blessing of Dimensionality
In practice, the variational space has high dimensionality, leading to
another challenge known as the curse of dimensionality. Gorban et
al. [11] discover that the curse of dimensionality can be transformed
into a blessing of dimensionality in some applications of machine
learning. Particularly, the classical concentration of measure theo-
rems in high-dimensional space indicates that as the dimensionality
increases, the volume of the space grows rapidly, leading to an in-
crease in the average distance between samples to approximate a
large constant [11]. This means that the non-diagonal elements in
Eq. (7) will become extremely small, and the large𝑀 ×𝑀 matrix in
Eq. (7) will become an identity matrix. Thus, the solution to Eq. (7)

is simply 𝛽𝑖 = 𝑒−
| |x𝑖 | |2

2 /𝑃𝑓 . Further considering the normalization
(i.e.,

∑
𝛽𝑖 = 1) and substituting 𝜷 into Eq. (5), we obtain the optimal

proposal distribution based on𝑀 failure samples,

𝑞(x) = 1∑𝑀
𝑚=1 𝑝 (x𝑚)

𝑀∑︁
𝑖=1

𝑝 (x𝑖 )N (x|x𝑖 , I) . (8)

This results in a closed-form solution for the optimal proposal distri-
bution, introducing zero parameter/hyperparameter and requiring
a computational cost of O(𝑀). Empirically, we find that even for
a dimension of 18 (a standard 6T-SRAM bit cell), the values of the
non-diagonal elements are on the order of 10−8, which validates our
hypothesis of the dimensional blessing. The main steps of EFIAL
yield estimation are summarized in Algorithm 1.

3.7 EFIAL For Pre-sampling
Pre-sampling is a critical step in IS-based yield estimation, especially
for non-updating methods such as MNIS and GIS. As we will show in
Fig. 7, the accuracy of yield estimation is significantly influenced by
both the size and methodology of pre-sampling. Even for updating
methods (e.g., ACS), pre-sampling is the key to high efficiency and
accuracy, as it provides an initial understanding of the geometry of
the parameter space. Naive pre-sampling methods include uniform
sampling or quasi-random uniform sampling (e.g., Latin Hypercube
Sampling). These methods are promising if given enough budget
but may lack efficiency, as many failure samples will lie far from the
origin, accounting for a small weight is in Eq. (1).

Onion Sampling (OS [4]) is an SOTA tuning-free quasi-random
pre-sampling. Starting from the origin, the sampling space expands
like a growing onion, where the growing volume is controlled to be
the same according to the cumulative probability distribution of a
Gaussian function. The growing volume, termed a layer, is selected
during sampling with a uniform probability distribution. A sample
inside the layer is then generated using another uniform distribution.
The key ingredient of OS is that after a certain number of samples
are generated, the inner layers that contain no failure samples are
removed, and the pre-sampling will focus on the remaining lay-
ers. This way, the pre-sampling is more effective by avoiding the
successful area normally residing near the origin.

Algorithm 1 EFIAL Yield Estimation Algorithm
Require: 𝑀 failure samples D = {x1, . . . , x𝑀 }; SPICE-based 𝐼 (x)
1: repeat
2: Update iteration 𝑡 = 𝑡 + 1
3: Build proposal 𝑞𝑡 (x) based on Eq. (8) with D
4: Sample 𝐾 points from 𝑞(x) and calculate importance weight:

5: Calculate the failure rate 𝑃𝑓 = 1
𝑡𝐾

𝑡∑
𝑗=1

𝐾∑
𝑘=1

𝑤
𝑗

𝑘

6: Collect all 𝐾 ′ failure samples D′ and update failure sample
collection D ← D ∪D′

7: until Figure of Merit (FOM): 𝑠𝑡𝑑 (𝑃𝑓 )/𝑃𝑓 < 0.1

The solution in Eq. (8) suggests that the centroid of the proposal
distribution should be weighted by the failure samples and their fail-
ure rate. Thus, a simple improvement to OS is that, when discarding
the inner layers, we also shift the centroid of the OS from the origin
the weighted centroid of the failure samples, 𝝁 =

∑𝑁
𝑖=1 𝑝 (x𝑖 )x𝑖 .

RB

M8

M10

M12

M9

M11

M13

Bias

VDD

M5

M1 M2

M3 M4

First section  Second section

M7

M14

M6

CC

VN VP

GND

1

CL

Load

CELL[0]

CELL[1]

CELL[N]

BLBL
WL[0]

WL[1]

WL[N]

0 1

0

0

1

1

…… 

WL

BL BL

VDD

GND

6T-SRAM 

CELL

_

Figure 2: OTA and SRAM array Circuits

4 EXPERIMENTAL RESULTS
In this section, we conduct a thorough assessment of the accuracy
and efficiency of our method, referred to as EFIAL, across three cir-
cuits: a 6T-SRAM, an operational transconductance amplifier (OTA)
and a 6-bit 6T-SRAM array circuit. To establish a robust foundation
for comparison, we implement four OMSV-based methods, namely,
MNIS [5], HSCS [9], AIS [8], and ACS [10], as well as one surrogate-
based method namely, LRTA [1]. MC is used as the gold standard to
estimate the true failure rate. The Figure of Merit (FoM), denoted as
𝜌 and calculated as 𝜌 = std(𝑃𝑓 )/𝑃𝑓 (where std(𝑃𝑓 ) represents the
standard deviation of estimated failure rate), serves as the termina-
tion criterion for all methods. We set 𝜌 = 0.1, a threshold commonly
adopted in numerous prior studies, such as [5] and [9]. This threshold
corresponds to a minimum 90% accuracy level with a 90% confidence
interval. The relative error is defined as the difference between the
true failure rate and the estimated value, divided by the true value.
The speedup is obtained by dividing simulations required by MC by
simulations required by each method.

In the experiments, each method is tested with ten random seeds,
and the final experimental results are obtained by averaging the re-
sults from these ten runs. Furthermore, we select the best-performing
seed for each method among the ten seeds to provide an intuitive
visualization of the iterative estimation of failure rate and its FoM.
The baseline methods are implemented using their default settings,
and in some cases where certain methods fall short, we fine-tune
hyperparameters to achieve better performance for different circuits.
Note that EFIAL does not require any tuning for any experiments.
All experiments are conducted on a Windows system with an AMD
7950x CPU and 32GB RAM.
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173.52x

Figure 3: Failure rate estimation with FoM on 6T-SRAM

Table 2: Yield Estimation Results on 6T-SRAM

Method Fail. Rate Rel. Error # Sim Speedup
MC 4.99e-5 - 406240 1x
MNIS 4.81e-5 3.61% 10030 40.50x
HSCS 4.86e-5 2.61% 4152 97.84x
AIS 4.85e-5 2.81% 9702 41.87x
ACS 4.70e-5 5.81% 9620 42.23x
LRTA 4.86e-5 2.61% 6130 66.27x
Proposed 4.97e-5 0.40% 2503 162.30x

4.1 6T-SRAM Circuit
The 6T-SRAM bit cell is shown in Fig. 2 (right). In this design, WL
stands for word line, and BL represents bit line. This architecture em-
ploys two cross-connected inverters, each using four transistors, as
data storage units. Two additional transistors act as control switches
for data transfer. Notably, each transistor has three variational pa-
rameters, which makes 6T-SRAM bit cell encompass 18 independent
random variables. We use the delay time of SRAM read/write opera-
tions as the main performance metric.

The yield estimation results are presented in Table 2 and Fig. 3.
EFIAL outperforms all baseline methods in terms of both accuracy
and efficiency. More specifically, EFIAL achieves an impressively low
relative error of 0.40%, which is 2.21% lower than the second-best
accuracy achieved by LRTA and HSCS; EFIAL achieves a remarkable
162.30x speedup compared to MC, and a 1.66x to the second best.

4.2 Operational Transconductance Amplifier
The operational transconductance amplifier (OTA) circuit, illustrated
in Fig. 2 (left), comprises 14 transistors. Each transistor is character-
ized by four process variation parameters, including oxide thickness,
threshold voltage, and variations in both length and width due to
process deviations. In our experimental setup, we evaluate the criti-
cal performance metric: quiescent current (𝐼𝑄 ) at a temperature of
27◦𝐶 .

The results of our yield estimation experiments, as presented in
Table 3 and Fig. 4, highlight the superiority of EFIAL, delivering a
5.29% accuracy improvement and a 3.23x speedup compared with
the second best methods in their respective categories. Furthermore,
the speedup of EFIAL over MC is 362.92x.

388.07x

Figure 4: Failure rate estimation with FoM on OTA

Table 3: Yield Estimation Results on OTA

Method Fail. Rate Rel. Error # Sim Speedup
MC 1.89e-4 - 1135200 1x
MNIS 1.64e-4 13.23% 21065 53.89x
HSCS 1.70e-4 10.05% 17950 63.24x
AIS 1.74e-4 7.94% 11178 101.56x
ACS 1.78e-4 5.82% 11053 102.71x
LRTA 2.04e-4 7.94% 10100 112.40x
Proposed 1.88e-4 0.53% 3128 362.92x

411.15x

Figure 5: Failure rate estimation with FoM on 6-bit array

Table 4: Yield Estimation Results on 6-bit 6T-SRAM Array

Method Fail. Rate Rel. Error # Sim Speedup
MC 5.62e-5 - 1417500 1x
MNIS 4.94e-5 12.10% 45174 31.38x
HSCS 4.21e-5 25.09% 47090 30.10x
AIS 4.37e-5 22.24% 15996 88.62x
ACS 4.92e-5 12.46% 14060 100.82x
LRTA 5.96e-5 6.05% 12300 115.24x
Proposed 5.61e-5 0.18% 3478 407.56x
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Table 5: Comparison for Different Pre-sampling Methods on 6-bit 6T-SRAM Array Circuit

Original Pre-sampling Onion Sampling EFIAL-Onion Sampling

Method Fail. Rate Rel. Error # Sim Speedup Fail. Rate Rel. Error # Sim Speedup Fail. Rate Rel. Error # Sim Speedup

MNIS 4.94e-5 12.10% 45174 31.38x 5.10e-5 9.25% 21824 64.95x 5.74e-5 2.14% 7894 179.57x
HSCS 4.21e-5 25.09% 47090 30.10x 5.02e-5 10.68% 24526 57.80x 5.52e-5 1.78% 5185 273.38x
AIS 4.37e-5 22.24% 15996 88.62x 5.17e-5 8.01% 9514 148.99x 5.75e-5 2.31% 8870 159.81x
ACS 4.92e-5 12.46% 14060 100.82x 5.23e-5 6.94% 10060 140.90x 5.37e-5 4.45% 6645 213.32x

4.3 6-bit 6T-SRAM Array Circuit
According to the previous introduction to SRAM circuit, each tran-
sistor contains three variational parameters. So a 6-bit SRAM array,
composed of six cells, each with six transistors, results in a total of
108 variational parameters. We continue to choose the delay time
of read/write as the interest performance metric y. The experimen-
tal results, as shown in Table 4 and Fig. 5, illustrate that as the
dimensionality of the process variable parameters increases, both
the relative error rates and simulation costs significantly rise for all
baseline methods. However, EFIAL remains stable and continues
to outperform all baselines in accuracy and efficiency. EFIAL main-
tains a low relative error at 0.18%, which is significantly lower than
other methods. Furthermore, EFIAL achieves a remarkable 407.56x
speedup compared to MC, and a 3.54x-13.54x speedup compared to
other baseline methods.
4.4 Computational Time
The computational time (by CPU hours) for the aforementioned yield
estimation experiments is shown in Fig. 6. EFIAL exhibits a superior
computational efficiency, achieving up to 4x (3.17x on average), 6.41x
(4.32x on average), and 13.6x (7.72x on average) speedup for the 6T-
SRAM, OTA, and 6-bit 6T-SRAM array circuits, respectively.

Figure 6: The Comparison of Computational Time
4.5 Pre-sampling Methods Comparison
Finally, we assess how EFIAL can improve the SOTA pre-sampling
method, onion sampling [4], which has shown promising results.
We first conduct comparison experiments on 6T-SRAM using EFIAL
with uniform sampling, onion sampling, and EFIAL-onion sampling.
The results are shown in Fig. 7, which show a clear improvement in
yield estimation accuracy (1−relative error) with the same budget
using EFIAL-onion sampling. When the budget is large, all methods
converge to the same accuracy level. In this case, EFIAL reaches an
accuracy of about 1 with 1500 samples, whereas onion sampling and
uniform sampling require 4000 and 6000 samples, respectively.

To further showcase the effectiveness of EFIAL-onion sampling,
we conduct comparison experiments for all OMSV-based baselines,
equipped with their original pre-sampling methods, onion sampling,
and EFIAL-onion sampling on 6-bit 6T-SRAM array. The results,
shown in Table 5, demonstrate that EFIAL-onion sampling con-
sistently provides substantial improvements on top of the gains

achieved by onion sampling across the four baseline methods. On
average, it enhances the accuracy of these methods by 15.26% and
improves efficiency with a 4.68x speedup, indicating the power of
EFIAL-onion sampling.
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Figure 7: EFIAL Accuracy with Pre-sampling budget

5 CONCLUSION
In this work, we generalize what is arguably the most fundamental
yield estimation method, OMSV, by harnessing all failure samples
(instead of only the most probable one), without introducing any
parameters or hyperparameters. The accuracy and efficiency of the
proposed method are well demonstrated and we expect the concept
of EFIAL to inspire more novel yield estimation methods.
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