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Abstract—As process nodes continue to shrink, yield estima-
tion has become increasingly critical in modern circuit design.
Traditional approaches face significant challenges: surrogate-
based methods often struggle with robustness and accuracy,
whereas importance sampling (IS)-based methods suffer from
high simulation costs. To address these challenges simultaneously,
we propose FUSIS, a unified framework that combines the
strengths of surrogate-based and IS-based approaches. Unlike
conventional surrogate-based methods that directly replace SPICE
simulations for performance predictions, FUSIS employs a Deep
Kernel support vector machine (SVM) as an approximation of the
indicator function, which is further utilized to construct a quasi-
optimal proposal distribution for IS to accelerate convergence.
To further mitigate yield estimation bias caused by surrogate
inaccuracies, we introduce a novel correction factor to adjust
the IS-based yield estimation. Experiments conducted on SRAM
and analog circuits demonstrate that FUSIS significantly improves
accuracy by up to 24.84% (8.67% on average) while achieving up
to 29.54× (10.30× on average) speedup in efficiency compared to
seven state-of-the-art methods.

Index Terms—Yield Estimation, Importance Sampling, Surro-
gate Model, Deep Kernel SVM

I. INTRODUCTION

As integrated circuit technology advances, microelec-
tronic devices are continuously shrinking to submicrometer
scales, making random process variations—such as intra-
die mismatches, doping fluctuations, and threshold voltage
shifts—critical factors in circuit design. In modern circuit
designs, especially with highly replicated structures like SRAM
cell arrays, addressing yield concerns is vital. Accurate and
efficient yield estimation methods are essential for assessing
failure rates under specific process variations.

Monte Carlo (MC) simulation, the industry-standard base-
line for yield estimation, involves running SPICE (Simula-
tion Program with Integrated Circuit Emphasis) simulations
with parameters drawn from the process variation distribution
millions of times and counting failures to obtain a precise
estimation. However, MC is computationally intensive and
becomes impractical for scenarios where the failure rate is as
low as 10−5, which is common in a 45nm SRAM cell array.

To enhance yield estimation efficiency, importance sampling
(IS)-based methods have gained prominence. Rather than sam-
pling from the default normal distribution, IS-based methods
leverage a proposal distribution to improve efficiency. One
effective strategy involves shifting the sampling center of the
normal distribution according to the Optimal Mean Shift Vector
(OMSV), which is typically identified by the Minimum Norm
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failure sample, as utilized by Minimum Norm Importance
Sampling (MNIS) [1]. To address the challenge of multiple fail-
ure regions, Hyperspherical Clustering and Sampling (HSCS)
employs clustering techniques to identify these regions and
assigns an OMSV to each, thereby constructing a mixture of
Gaussian distributions [2]. To overcome the limitations of static
distributions, Adaptive Importance Sampling (AIS) introduces
a dynamically updated sampling distribution, significantly en-
hancing the accuracy of yield estimation [3]. Combining the
strengths of HSCS and AIS, Adaptive Clustering and Sam-
pling (ACS) further improves estimation efficiency by con-
structing a dynamically updated weighted mixture of Gaussian
distributions [4]. Due to the complexity of high-dimensional
parameter spaces, which cannot be adequately captured by
specific distributions, Optimal Manifold Importance Sampling
(OPTIMIS) employs a generative model known as normalizing
flow to fit the optimal proposal distribution [5]. Despite their
success, IS-based methods remain computationally expensive
during sampling for estimation.

Another critical approach to enhancing yield estimation
efficiency involves surrogate-based methods, which construct
data-driven surrogate models to approximate circuit perfor-
mance functions that typically require SPICE simulations,
thereby significantly reducing simulation costs. In particular,
[6] employs a Gaussian process (GP) to model the underly-
ing performance functions and applies an entropy reduction
strategy within an active learning framework. Building on this,
Absolute Shrinkage Deep Kernel Learning (ASDK) replaces
the GP with a nonlinear-correlated deep kernel method, which
also includes feature selection to identify essential features
for targeted analysis [7]. Additionally, [8] adopts a low-rank
tensor approximation (LRTA) to efficiently approximate the
performance function. Despite their successes, surrogate-based
methods have not gained widespread acceptance due to their
intrinsic instability and substantial data requirements. Addi-
tionally, surrogate-based methods are susceptible to challenges
associated with highly nonlinear optimization during training.
Without meticulous management, this can lead to flawed sur-
rogate models and subsequently inaccurate yield estimations,
which are intolerable in industry.

The strengths and weaknesses of IS-based and surrogate-
based methods are both quite pronounced. Bayesian Optimized
Importance Sampling (BOIS) combines surrogate models with
IS, using the surrogate model to replace SPICE simulations,
thereby reducing the simulation cost in the IS-based estimation
process [9], [10]. However, as mentioned earlier, if the sur-
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rogate model is inaccurate, it can lead directly to estimation
errors. Recently, [11] proposes a two-stage meta-model IS
based on the support vector machine (SVM) for rare event
estimation. While effective in certain contexts, this method
struggles to handle highly nonlinear problems.

In this paper, we present FUSIS, a unified framework that
leverages the advantages of surrogate-based and IS-based meth-
ods to achieve accurate and efficient yield estimation. Unlike
conventional surrogate-based approaches that directly replace
SPICE simulations, FUSIS introduces Deep Kernel SVM as
a surrogate indicator function. This, in combination with the
known process variation distribution, enables the construction
of a quasi-optimal proposal distribution for IS, significantly
accelerating the convergence of the yield estimation. Further-
more, to address the potential bias introduced by inaccuracies
in the SVM surrogate, we propose a novel correction factor that
effectively calibrates the IS-based yield estimation. In summary,
the novelty of this work includes:

1) FUSIS: A comprehensive framework that unifies the
strengths of surrogate-based and IS-based methods to
achieve improved performance in yield estimation.

2) Deep Kernel SVM: Employed as an indicator func-
tion approximation to effectively handle highly nonlinear
problems.

3) Quasi-optimal Proposal Distribution: Constructed us-
ing SVM indicator function approximations, acting as the
proposal distribution for IS to accelerate convergence.

4) Novel Correction Factor: Developed to calibrate the
yield estimation bias introduced by potential inaccuracies
in the SVM surrogate, ensuring estimation accuracy.

5) Extensive Validation: Demonstrated the superiority of
FUSIS on multiple SRAM and analog circuits through
comprehensive experiments, ablation studies, and robust-
ness tests, showing up to a 24.84% improvement in
accuracy (8.67% on average) and up to 29.54× (10.30×
on average) speedup in efficiency when compared to
seven state-of-the-art (SOTA) yield methods.

II. BACKGROUND

A. Problem Definition

Consider the variation variables x =
[x(1), x(2), · · · , x(D)]T ∈ X , where X is the parameter
space encompassing these variations. Generally, X is a high-
dimensional space of dimension D, with each component of
x representing a distinct manufacturing-related parameter that
impacts a circuit, such as the length or width of PMOS and
NMOS transistors. For the purposes of our analysis, we assume
that the elements of x are statistically independent and follow a
Gaussian distribution: p(x) = (2π)−

D
2 exp

(
− 1

2∥x∥
2
)
. Given

x, we can assess the performance of the circuit, denoted by y
(e.g., metrics like memory read/write time and amplifier gain),
through SPICE simulation. This relationship can be expressed
as y = f(x), where f(·) denotes the SPICE simulator. A
design is considered successful if y meets all predefined
criteria t (e.g., y(k) ≤ t(k) for k = 1, · · · ,K); otherwise,
it is regarded as a failure. To indicate failure, we define an
indicator function I(x), where I(x) is 1 representing a failure

design and 0 otherwise. The true failure rate Pf is then given
by: Pf =

∫
X I(x)p(x)dx.

B. Monte Carlo Yield Estimation

Directly calculating the yield is impractical due to the
unknown function I(x). One common method to estimate the
failure rate is through MC simulation. This method involves
sampling xi from the distribution p(x) and then computing
the failure rate as the proportion of failures. Formally, this
is expressed as: P̂f = 1

N

∑N
i=1 I(xi), where xi represents

the i-th sample from p(x), and N is the total number of
samples. To achieve an estimate with an accuracy of 1− ε and
a confidence level of 1 − δ, the required number of samples
can be approximated by: N ≈ log(1/δ)

ε2P̂f
. For instance, to obtain

an estimate with 90% accuracy (ε = 0.1) and 90% confidence
(δ = 0.1), the number of samples needed is roughly: N ≈ 100

P̂f
.

This sample size becomes impractically large for very small
values of P̂f , such as 10−5. Intuitively, this means that, on
average, 1/P̂f samples are necessary to get one failure event.

C. Importance Sampling Yield Estimation

Unlike MC that samples directly from the distribution p(x),
IS-based methods use a proposal distribution q(x) to draw
samples and estimate the failure rate by

Pf =

∫
X

I(x)p(x)

q(x)
q(x)dx ≈ 1

N

N∑
i=1

I(xi)p(xi)

q(xi)
, (1)

where xi are samples drawn from q(x), and the integral is
approximated as in MC. Equation (1) is proven to be more
efficient than traditional MC, provided that the proposal distri-
bution q(x) is carefully chosen. According to [5], the optimal
proposal distribution is given by

q∗(x) = I(x)p(x)/Pf . (2)

D. Support Vector Machine

SVM [12] is a supervised machine learning algorithm widely
used for classification and regression. SVM finds the optimal
hyperplane that maximally separates different classes in the
feature space. Given a set of training samples {(xi, I(xi))}ni=1,
where xi ∈ Rd and I(xi) ∈ {0, 1}, the optimization problem
is formulated as argminw,b,ξ

1
2∥w∥2 + C

∑n
i=1 ξi, subject to

I(w · xi + b) ≥ 1− ξi, ξi ≥ 0, i = 1, . . . , n, (3)

where w is the normal vector to the hyperplane, b is the bias
term, ξi are slack variables for handling non-separable cases,
and C is a regularization parameter. To extend to non-linear
problems, SVM employs kernels such as radial basis function
(RBF) or sigmoid kernel to map the input features to higher-
dimensional spaces and compute the correlation implicitly
through kernel function κ(xi,xj) = ϕ(xi) · ϕ(xj).

III. PROPOSED APPROACH

We unify surrogate-based and IS-based methods into a com-
prehensive framework, FUSIS, by leveraging their strengths.
Unlike traditional surrogate models that directly replace SPICE
simulations, the core of FUSIS is to use the surrogate model
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Fig. 1: The overall flow of FUSIS: (1) Perform pre-sampling using Onion Sampling [5] to extract pre-training samples (failure
and non-failure samples.) (2) Train a Deep Kernel SVM as the indicator function I ′(x). (3) Construct the quasi-optimal proposal
distribution q′(x) using Eq. (7) and sample from it using MCMC to compute the correction factor. (4) Calculate the failure rate
using Eq. (10). If convergence is not achieved, return to (2); otherwise, output the failure rate.

to assist in constructing the optimal proposal distribution for
IS, accelerating convergence. Additionally, we introduce a
correction factor to address the surrogate model’s inaccuracies.
The overall flow of FUSIS is shown in Fig. 1.
A. Deep Kernel SVM as Indicator Function Approximation

We first introduce the Deep Kernel SVM as the surrogate
indicator function I ′(x), which combines the feature extraction
capabilities of deep neural networks (DNNs) with the robust
classification of SVMs, providing an effective approach for
handling highly nonlinear problems. The Deep Kernel SVM
leverages a DNN to extract complex features from input
samples xi ∈ Rd. The DNN maps these inputs to a higher-
dimensional feature space through multiple layers of nonlin-
ear transformations, denoted as ϕNN (xi). This transformation
captures intricate data patterns essential for accurate yield
estimation.

Once the features are extracted, the SVM finds the opti-
mal hyperplane to separate failure and success cases in this
transformed feature space. The decision function of the SVM,
F (x) = w·ϕNN (x)+b. is used to define the surrogate indicator
function I ′(x), which determines whether the circuit design has
failed:

I ′(x) =

{
1, if F (x) < 0

0, if F (x) ≥ 0
. (4)

B. Efficient Sampling From q′(x) Using MCMC
With the indicator function I ′(x) derived from the Deep

Kernel SVM, the failure rate can be estimated as:

P ′
f =

∫
X
I ′(x)p(x)dx ≈ 1

N

N∑
i=1

I ′(xi). (5)

However, due to estimation bias arising from the inaccuracy of
the SVM surrogate (see Fig. 1), P ′

f cannot serve as the final
failure rate. IS-based estimation is known for its stability and
convergence. Therefore, we use the SVM surrogate to assist in
constructing a quasi-optimal proposal distribution q′(x) for IS,
as per Eq. (2), to accelerate the IS estimation:

q′(x) = I ′(x)p(x)/P ′
f . (6)

Due to the presence of P ′
f in the denominator, direct sam-

pling from q′(x) is challenging. To address this, we use the
Metropolis-Hastings algorithm [13], a widely used method in
Markov Chain Monte Carlo (MCMC) [14] for generating a
sequence of samples from a probability distribution that is
difficult to sample directly. The algorithm begins with an initial
sample x0 and generates candidate samples x′ from a proposal
distribution g(x|xt), typically modeled as a Gaussian distribu-
tion centered at the current sample: g(x|xt) = N (xt, σ

2). The
acceptance ratio α is computed as:

α = min

(
1,

q′(x′)g(xt|x′)

q′(xt)g(x′|xt)

)
. (7)

The candidate sample x′ is accepted with probability α. If
accepted, xt+1 = x′; otherwise, xt+1 = xt. This process is
iterated to generate a sequence of samples.

By using I ′(x), the construction of the quasi-optimal pro-
posal distribution q′(x) leverages the strengths of Deep Kernel
SVM in handling complex, nonlinear distributions, thereby
enhancing the efficiency and accuracy of failure rate estimation.

C. IS-based Yield Estimation Correction Factor

After obtaining the quasi-optimal proposal distribution q′(x)
by Eq. (7) and efficiently sampling from it, the failure rate
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estimation can be rearranged as:

Pf =

∫
X

I(x)p(x)

q′(x)
q′(x)dx = P ′

f

∫
X

I(x)

I ′(x)
q′(x)dx = αcP

′
f ,

(8)
which reveals the connection between the golden standard Pf

and the IS-based estimation P ′
f . We introduce a correction

factor αc to calibrate the IS-based estimation by accounting for
inaccuracies in I ′(x), the surrogate indicator function estimated
by the SVM. The correction factor αc can be conveniently
approximated as:

αc =

∫
X

I(x)

I ′(x)
q′(x)dx ≈ 1

M

M∑
j=1

I(xj)

I ′(xj)
, (9)

where {xj}Mj=1 are samples drawn from q′(x). Thus, I ′(xj) =
1 for failure samples identified by the SVM, the correction fac-
tor α̂c simplifies to: α̂c =

1
M

∑M
j=1 I(xj). Thus, incorporating

the correction factor α̂c, the estimated failure rate is calibrated:

P̂f = α̂cP̂
′
f =

1

MN

M∑
j=1

I(xj)

N∑
i=1

I ′(xi). (10)

In summary, FUSIS leverages the indicator function from
the Deep Kernel SVM to construct a quasi-optimal proposal
distribution for IS, enabling accurate identification of failure
regions in the parameter space. By efficiently sampling from
this distribution and applying a correction factor (its impact on
the accuracy has been validated through ablation experiments
in IV-E.), we significantly improve yield estimation accuracy.
This approach not only mitigates the inaccuracies of the SVM
surrogate but also enhances the overall efficiency of IS-based
estimation. The full algorithm is summarized in Algorithm 1.

IV. EXPERIMENTAL RESULTS

In this section, we thoroughly evaluate the accuracy and
efficiency of our proposed method, FUSIS, for yield estimation
on four benchmark circuits: a 6T-SRAM bit cell, an operational
transconductance amplifier (OTA), a 6-bit 6T-SRAM array, and

Algorithm 1 FUSIS Algorithm

Require: SPICE-based indicator function I(x)
1: Use Onion Sampling [5] to draw initial sample set D =

{(xi, I(xi))}ni=1

2: repeat
3: Update iteration t = t+ 1
4: Use Deep Kernel SVM to approximate the indicator

function I ′t(x) and estimate P̂ ′t
f according to Eq. (5)

5: Construct the quasi-optimal proposal distribution q′t(x)
using Eq. (7)

6: Use Metropolis-Hastings sampling to draw M samples
from q′t(x) and calculate the correction factor α̂t

c =
1
M

∑M
j=1 I(xj).

7: Estimate the failure rate P̂f = 1
t

t∑
l=1

α̂t
cP̂

′t
f

8: Update sample collection D with new samples
9: until Figure of Merit (FOM): std(P̂f )

P̂f
< 0.1

10: return Failure rate P̂f
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Fig. 2: Simplified schematic for 6T-SRAM and OTA Circuits.

a 1093-dimensional SRAM column circuit. To ensure a com-
prehensive comparison, we implement seven SOTA methods as
baselines: MNIS [1], HSCS [2], AIS [3], ACS [4], LRTA [8],
ASDK [7], and OPTIMIS [5]. We use MC simulations as the
gold standard for estimating the true failure rate. Additionally,
we employ the Figure of Merit (FoM), denoted as ρ, which
is calculated as ρ =

std(P̂f )

P̂f
, where std(P̂f ) represents the

standard deviation of the estimated failure rate. Following the
approach in [1], [2], we set ρ = 0.1 as the termination
criterion for all methods. To assess performance, speedup is
determined by #SimMC

#Sim , and the relative error rate is calculated
as (P̂f − P̂fMC

)/P̂fMC
.

In the experimental setup, for Deep Kernel SVM, we imple-
ment a feature extractor using a three-layer DNN. The structure
consists of: the first layer expanding the input dimension by 4×,
the second layer reducing it to 2× the input dimension, and the
third layer restoring it to the original dimension. Each layer uses
ReLU activation [15], with a 50% Dropout applied after the first
two layers to prevent overfitting. The feature extractor is trained
for 1000 epochs, optimized using mean squared error (MSE)
loss and the Adam optimizer [16]. After extracting features,
we employ the SVM with a RBF kernel for classification,
using GridSearchCV to optimize the regularization parameter
C and the kernel parameter γ. For each method, we perform ten
experiments using different random seeds, ensuring consistency
in seed usage across all methods. The final failure rate is
obtained by averaging the results of these ten experiments.
Furthermore, we select the best-performing outcome from the
ten random seed experiments for each method to visualize the
iterative estimation of the failure rate and its FoM. Baseline
methods are configured using their default settings, with hyper-
parameters fine-tuned where necessary to enhance performance.
All experiments are conducted on a Windows system equipped
with an AMD 7950X CPU and 32GB RAM.

A. 6T-SRAM Bit Cell

The 6T-SRAM bit cell, depicted on the left side of Fig. 2,
is implemented using a 45nm CMOS process and comprises
six transistors. Each transistor has three independent random
variables: threshold voltage, mobility, and gate oxide thickness.
These variables play a crucial role in affecting yield across
all variation parameters, resulting in a total of 18 independent
random variables for the circuit. Our experiments focus on the
delay time of SRAM read/write operations as the key perfor-
mance metric. The yield estimation results are summarized in
Table I, while the failure rate convergence and FoM evaluation
are illustrated in Fig. 3. We can see that FUSIS provides the
most accurate estimation with the fewest simulations. In terms
of accuracy, FUSIS achieves a relative error rate as low as
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274.03×

Fig. 3: Failure rate estimation with FoM on 6T-SRAM
TABLE I: Yield Estimation Results on 6T-SRAM

Model Fail. Rate Rel. Err. # Sim Speedup

MC 4.99e-5 - 406240 1×
MNIS 4.81e-5 3.61% 10030 40.50×
HSCS 4.86e-5 2.61% 4152 97.84×
AIS 4.85e-5 2.81% 9702 41.87×
ACS 4.70e-5 5.81% 9620 42.23×
LRTA 4.86e-5 2.61% 6130 66.27×
ASDK 4.85e-5 2.81% 6640 61.18×
OPTIMIS 4.93e-5 1.18% 3916 103.74×
FUSIS 4.95e-5 0.80% 1602 253.58×

669.49×

Fig. 4: Failure rate estimation with FoM on OTA
TABLE II: Yield Estimation Results on OTA

Model Fail. Rate Rel. Err. # Sim Speedup

MC 1.89e-4 - 1102000 1×
MNIS 1.64e-4 11.94% 21065 52.3×
HSCS 1.70e-4 10.15% 17950 61.39×
AIS 1.74e-4 8.18% 11178 98.59×
ACS 1.78e-4 5.59% 11053 99.70×
LRTA 2.04e-4 7.94% 10100 109.11×
ASDK 2.14e-4 11.68% 9600 114.79×
OPTIMIS 1.92e-4 1.57% 4126 267.09×
FUSIS 1.90e-4 0.79% 1727 638.10×

0.80%, improving by 0.38% to 5.01% over other baselines.
For efficiency, FUSIS offers up to 253.58× speedup over MC,
and 2.44× to 6.26× speedup over other baselines.

B. Operational Transconductance Amplifier

The OTA circuit, shown on the right side of Fig. 2, consists
of 14 transistors. Each transistor has four process variation
parameters: oxide thickness, threshold voltage, and deviations
in length and width due to process variations. This results in
a total of 56 independent random variables for the circuit. Our

819.18×

Fig. 5: Failure rate estimation with FoM on 6-bit Array
TABLE III: Yield Estimation Results on 6-bit Array

Model Fail. Rate Rel. Err. # Sim Speedup

MC 5.62e-5 - 1417500 1×
MNIS 4.94e-5 12.03% 45174 31.38×
HSCS 4.21e-5 25.09% 47090 30.10×
AIS 4.37e-5 22.19% 15996 88.62×
ACS 4.92e-5 12.44% 14060 100.82×
LRTA 5.96e-5 6.05% 12300 115.24×
ASDK 5.87e-5 4.44% 12500 113.40×
OPTIMIS 5.66e-5 0.71% 5300 267.45×
FUSIS 5.61e-5 0.25% 1737 816.02×

experiments focus on the quiescent current IQ at 27◦C as the
performance metric. The yield estimation results are presented
in Table II, and the progression of failure rate convergence
along with the FoM evaluation is depicted in Fig. 4.

The results show that FUSIS consistently delivers highly ac-
curate estimations with fewer simulations for the analog circuit.
In terms of accuracy, FUSIS achieves a relative error rate as
low as 0.79%, improving by 0.78% to 11.15% compared to
baselines. In efficiency, FUSIS reaches up to 638.10× speedup
over MC and 2.39× to 12.20× over other baselines. These
findings underscore the robustness of FUSIS across different
circuit complexities.
C. SRAM Array Circuit

Building on the successful validation of FUSIS in the 6T-
SRAM bit cell experiments, we extend its application to two
complex SRAM array circuits: a 6-bit 6T-SRAM array and a
1093-dimensional SRAM column circuit.

1) 6-bit 6T-SRAM Array: This circuit consists of six 6T-
SRAM bit cells and includes 108 variational parameters, ac-
counting for the effects of peripheral circuits to enhance the
accuracy of failure rate estimation. The results are shown in
Table III, with the failure rate convergence and FoM evaluation
illustrated in Fig. 5. FUSIS continues to perform exceptionally
well on the higher-dimensional circuit. In terms of accuracy,
FUSIS achieves a relative error rate as low as 0.25%, improving
accuracy by 0.46% to 24.84% over baselines. In terms of
efficiency, FUSIS provides up to 816.02× speedup over MC,
and 3.05× to 27.11× speedup over other baselines. These
results demonstrate its effectiveness in handling the complexity
of advanced SRAM architectures.

2) 1093-Dimensional SRAM Column: We further increase
the complexity of the problem by incorporating a detailed
BSIM4 model, accounting for 1093 variation parameters. The
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TABLE IV: Yield Estimation Results on 1093-D Column
Model Fail. Rate Rel. Err. # Sim Speedup

MC 4.80e-5 - 1650000 1×
MNIS 4.21e-5 12.32% 81000 20.37×
HSCS 1.53e-6 N/A - -
AIS 3.79e-5 21.04% 27900 59.14×
ACS 4.30e-5 10.42% 24000 68.75×
LRTA 3.33e-5 N/A - -
ASDK N/C - - -
OPTIMIS 4.95e-5 3.13% 4832 341.47×
FUSIS 4.73e-5 1.46% 2737 602.85×

“N/C” stands for “Not Converged.” And “N/A” stands for “Not Applicable,”
meaning that the relative error rate of this method exceeded 30%, making it
unable to provide an accurate estimation.

results are presented in Table IV. HSCS, LRTA, and ASDK
are not suitable for such high-dimensional circuits, as they
may lead to significant estimation errors or even convergence
failures. In contrast, FUSIS is highly effective in handling high-
dimensional circuits, achieving a relative error rate as low as
1.46%. Moreover, it offers a speedup improvement of 1.77×
to 29.54× in efficiency compared to other baselines.

TABLE V: The Comparison of Computational Time
CPU Hours MNIS HSCS AIS ACS LRTA ASDK OPT. FUSIS

6T-SRAM 4.8 2.0 4.6 4.6 3.1 3.2 2.0 0.8
OTA 50.5 43.0 26.8 26.5 24.3 25.0 10.0 4.4
6-bit Array 270.9 283.2 95.9 84.3 73.9 75.7 32.4 10.6

6T-SRAM OTA 6-bit 6T-SRAM Array

Fig. 6: The comparison of training time (min)
D. Computational Time Study

The computational time comparison for the experiments is
shown in Table V, where FUSIS demonstrates a significant
efficiency advantage, with average speedups of 4.34×, 6.69×,
and 12.35× for the 6T-SRAM, OTA, and 6-bit 6T-SRAM
array circuits, respectively. Additionally, the training time of
FUSIS is compared to three SOTA methods (LRTA, ASDK, and
OPTIMIS), which involve training machine learning models.
As shown in Fig. 6, FUSIS achieves average speedups of
1.28×, 4.87×, and 3.13× across the three circuits. These results
highlight the superior computational and training efficiency of
FUSIS.

E. Ablation Study on the Impact of the Correction Factor

We conduct ablation experiments on all benchmark circuits
to assess the impact of the correction factor on the accuracy of
failure rate estimation, as shown in Table VI ( the second col-
umn is the true failure rate). Fig. 7 shows a comparison of the
convergence accuracy during the estimation iterations of FU-
SIS, with and without the correction factor. From Table VI and
Fig. 7, it is evident that without the correction factor—relying
solely on the SVM surrogate model—accurate estimations

TABLE VI: Ablation Study on the Correction Factor
With correction No Yes
Metric True Fail. Rate Rel. Err. Fail. Rate Rel. Err.

6T-SRAM 4.99e-5 5.92e-4 N/A 4.95e-5 0.80%
OTA 1.89e-4 2.87e-2 N/A 1.90e-4 0.79%
6-bit Array 5.62e-5 2.70e-4 N/A 5.61e-5 0.25%
1093-D Column 4.80e-5 3.52e-4 N/A 4.73e-5 1.46%

Unable to converge correctly

True

6-bit Array circuit

Fig. 7: Ablation study of FUSIS in estimation iterations

are not achieved. However, incorporating the correction factor
significantly improves accuracy, with an average relative error
of just 0.61%. This demonstrates that the correction factor
effectively mitigates the estimation bias caused by surrogate
model inaccuracies.

Fig. 8: Incorrect estimation counts in all experiments

F. Robustness Study

To address the industry’s key concern of robustness, we
conduct a comprehensive study on three benchmark circuits
for all methods. Each method is tested with the same set
of ten random seeds, and the number of incorrect estima-
tions—defined as those with a relative error rate exceeding
30%—is recorded in Fig. 8. The results show that FUSIS
consistently demonstrates superior stability across all circuits.
In the 6T-SRAM experiment, both FUSIS and MNIS fail only
once out of ten runs, while in the OTA and 6-bit 6T-SRAM
array circuits, FUSIS fails only twice. This underscores the
effectiveness of SVM surrogate calibration.

V. CONCLUSION

In this paper, we propose FUSIS, a unified framework
that combines surrogate-based and IS-based methods for ac-
curate and efficient yield estimation. By introducing Deep
Kernel SVM and a novel correction factor, FUSIS accelerates
convergence and mitigates estimation bias, delivering signifi-
cant improvements in both accuracy and efficiency compared
to conventional methods. Extensive experiments on multiple
benchmark circuits demonstrate FUSIS’s superior performance
in yield estimation over seven SOTA methods, with notable
gains in both accuracy and computational efficiency.
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